Project: UF-323A Chemistry/Chemical Biology Building
Location: University of Florida, Gainesville, FL
Budget: $95,000 (honoraria will be given outside of this amount to finalists to make a site-specific proposal)
Deadline For Entries: Received by 5:00pm Sept. 26, 2015
Project Timeline: The anticipated completion date for this project is August 2016.
Criteria to Apply: Artist has met at least (2) of the following:
• the artist has completed public commissions similar in budget and scale
• the artist's works are in major public, private, corporate, or museum collections
• the artist has receive awards, grants, or fellowships
• the artist has had a one-person exhibition in a museum with the past five years
Required Materials:
Statement: (one page or less) Briefly explain your interest in this project and how the submitted images relate to this project. This should not be a site-specific proposal.
Resume: Current, professional resume emphasizing public art experience, public collections and public commissions.
Images: 5 – 20 digital images of artwork. Images should be in .JPG format with a minimum resolution of approximately 800x600 pixels and a maximum resolution of approximately 1900x1500.
Each image file should match the following format: Artist’s Last Name, Corresponding Image Number from ID Sheet, Artwork Title (use representative words for a long title). If the image is a detail, please indicate that as well.
Example: Harris_04_Sunset_detail.jpg
Make sure your images are in the same order as listed on the ID Sheet. The first five images on the ID sheet will be seen in the initial blind review. No identifying information should appear on the images. Please provide the committee with details/close-ups of large or complex artworks.
Image Identification Sheet: Image identification sheet that provides for each submitted image: Artist Name, Image Number, Title of Work, Medium, Dimensions, Date of Work, Price of Work or Amount of Commission.
Video: Artwork with sound or motion may be submitted as short MP3 files.
Note: We do not accept PowerPoint presentations or digitally watermarked images. The original signature on the work of art is acceptable.
UF-323A Chemistry/Chemical Biology Building - Call To Artists

Digital Images, Statement, Resume and Image Identification Sheet may submitted via Dropbox or other file-sharing site by providing a link to pubart@arts.ufl.edu

Tips For Submission: www.arts.ufl.edu/asb

Mail Entries To:
Art in State Buildings
UF-323A Chemistry/Chemical Biology Building
UF College of the Arts
PO Box 115803
Gainesville, FL 32611

Send Express Entries To:
Art in State Buildings
UF-323A Chemistry/Chemical Biology Building
UF College of the Arts – Fine Arts B
400 SW 13th Street
Gainesville, FL 32611

Questions/Contact:
Bryan Yeager
(352) 273-3043
pubart@arts.ufl.edu

For more information about the UF-323A Chemistry/Chemical Biology Building, visit the UF Facilities, Planning, and Construction website at www.facilities.ufl.edu/projects/current.php

This project is administered through the Florida’s Art in State Building (ASB) program, and will comply with standards set in the Florida Art in State Buildings Handbook http://dos.florida-arts.org/documents/asb-handbook/

Please visit the Art in State Buildings contract link to familiarize yourself with the contract contents.
http://www.facilities.ufl.edu/forms/contracts/ASB.pdf
THE UNIVERSITY OF FLORIDA

As one of the nation’s most comprehensive research institutions, the University of Florida is in a unique position to pursue the multidisciplinary research and education that 21st century problems demand. With thousands of faculty and hundreds of research labs on its Gainesville campus and throughout the state, UF has the intellectual and physical resources to pursue the big questions in science, particularly about human health. UF is one of only 17 public, land-grant universities — and the only university in Florida — to be a member of the prestigious Association of American Universities, which comprises the 63 leading research universities in the United States and Canada.

CHEMISTRY DEPARTMENT

Chemistry is a crucial component of the University’s teaching mission. The Department of Chemistry impacts over 8,000 undergraduate students each semester, generating over 50,000 student credit hours annually. Essentially every biological science, health science, physical science, and engineering major requires at least introductory chemistry, often significantly more. The Department of Chemistry is also home to 640 undergraduate majors. Student demand for Chemistry has skyrocketed. In less than ten years’ time, student enrollment in Chemistry courses has increased 30% and the number of undergraduate chemistry majors has doubled.

The Department of Chemistry awards more Ph.D. degrees than any other unit at the University of Florida. Graduate student enrollment has also increased by more than 30%, in successful response to the University’s initiative to grow graduate education. The Department now houses 251 Ph.D. students. The 34 Ph.D.’s awarded last year place the University of Florida among the top 5 Chemistry Ph.D. producers in the United States.

When considering degree production at all levels, the chemical industry’s principal trade publication, the American Chemical Society’s Chemical and Engineering News, calls the Department of Chemistry at the University of Florida one of five “Powerhouse Departments” in America.

The Department is entering an exciting phase of redefining chemistry at the University of Florida. Significant participation in the State of Florida DROP program affords the opportunity to hire several faculty members in the chemical sciences to meet teaching demands over the next few years. Traditionally one of the top chemistry departments in the United States, we are using this opportunity to adapt our scholarly focus to keep ahead of changing research opportunities and respond to high-technology training needs within the State of Florida and nationwide.
CHEMISTRY/CHEMICAL BIOLOGY BUILDING

The new Chemistry/Chemical Biology Building is the cornerstone of this new growth. The new facility will modernize, expand, and centralize undergraduate laboratories and teaching infrastructure. It will catalyze development in critical areas that build on chemical insights into biological problems. The building will house researchers in biochemistry, chemical applications of genetics, biophysical chemistry, drug discovery, and nanotechnology as applied to the analysis and detection of pathogens and disease as well as many others. The facility will be the centerpiece of recruitment for the next generation of world class chemical biology faculty and students.

The new Chemistry/Chemical Biology Building will provide over 110,000 GSF for modern undergraduate teaching laboratories, learning centers and teaching support, graduate research laboratories, and offices. The building will provide a centralized home for lower-level undergraduate chemistry instruction. It will also provide state-of-the-art research facilities for faculty and graduate students working in the areas of chemical biology and chemical synthesis. Importantly, the Chemistry/Chemical Biology Building would be at the same time functional and inviting, and will be the Department’s “front door,” through which the Department is seen by students, the University, and the community.

The current site is in the historic part of campus. To get approvals from the VP’s office and Preservation of Historic Buildings and Sites Committee, massing and materials in this building were designed to be compatible with nearby facilities, while also being “of its time” and presenting an appropriate esthetic from all angles and heights. Flint Hall which is the adjoining building on the east side of the site is a three level building while the Chemistry Lab Building (CLB) to the south and the Housing buildings to the west of the site are four story buildings. In the nearby area, the Library West building is three stories, while the back of this building on south side is much taller. For this project, the design team met with the appropriate Users, visited the adjoining chemistry buildings, and analyzed the existing facilities for their functionality to determine the best design fit that maximized function in the new building while preserving esthetics and acceptable heights relative to existing facilities to accommodate the balance of the program.

The building will house all of the University’s General Chemistry courses on first level and Organic Chemistry laboratory courses on second level. The General Chemistry teaching laboratories will allow incorporation of up-to-date curriculum, provide for comfortable space for student-student and student-instructor interactions and of course meet contemporary safety standards. The General Chemistry labs will accommodate 32 stations for up to 256 students per lab session and equipment storage for all students per term. Space has been designed for a lab stockroom and preparations lab, along with demonstration spaces.
CHEMISTRY/CHEMICAL BIOLOGY BUILDING continued…

The Organic Chemistry Teaching Labs will accommodate up to 108 students per lab session with supply storage for students per semester. The Organic lab will have fume hoods at the student benches to permit the use of organic chemicals. The Organic lab will also include a storeroom, preparations space and centralized meeting/demonstration space.

Included are 4 dedicated meeting rooms designated as Chemistry Learning Centers that can accommodate approximately 100 undergraduate General and Organic Chemistry students in a workshop environment. A student services office will provide a home base for student information and advising. A 76 seat auditorium is designed to accommodate departmental seminars and mid-size classes.

Student access to the undergraduate teaching labs and learning centers is facilitated by a two-story atrium, which, in addition to providing circulation and queuing space, will serve as the building’s “living room,” including casual seating and stand-up docking stations for personal electronic devices. Running the entire length of the building along Buckman Drive, the atrium connects both main student entrances, including a distinctive covered entry portico that will serve to anchor the building to the campus gateway corner of University Avenue and Buckman Drive. A series of two-story windows along Buckman will admit natural light to the teaching labs, while providing transparent display of the inner-workings of the atrium and labs, especially at night.

The building will provide modern research space optimized for chemical biology and organic synthesis. The chemical biology labs will include bench space and office space for researchers along with common space for shared instrumentation and facilities. Specific features of the chemical biology labs include walk-in freezers, tissue culture labs, and specific air change to eliminate cross contamination of cell cultures. Areas for instrumentation, such as spectrophotometers, HPLC and FLPC-based protein purification and assay systems, fluorimeters, balances, robotic setups for protein expression and library screening will also be required. Given that many reagents are potentially toxic, there should be access to hoods in each chemical biology laboratory albeit in smaller numbers than provided in the dedicated “synthesis” facility. In addition, each floor will have cold rooms, in which the temperature is maintained at 4°C, facilities for two autoclaves and areas to which access can be restricted for performing experiments with radioactive isotopes. Adequate space for large -80°C freezers and centrifuges is also designed on thirds level. This is lacking in existing Chemistry buildings. Modern practice is for student desks to be in rooms that are shielded from the main laboratory areas by a glass/gypsum partition. This arrangement maximizes student safety when they are not working at the bench while permitting problems in the laboratory to be identified and corrected. Substantial shelf space will also be provided on each bench given the large number of solutions that are generally used in chemical biology experimental protocols. Given the increasing importance of mass spectrometry in chemical biology research, areas for “bench-top” mass spec/chromatography setups has also been provided. Finally, each laboratory will require extensive wireless networking due to the importance of accessing biological databases and library resources over the Internet. Organic synthesis laboratories are fume-hood intensive and modern standards dictate one fume-hood per researcher.
ART CONTEXT

The first two floors of the building will be dominated by the new undergraduate laboratory facilities, and the accompanying two story Atrium between the west side windows and these laboratories will be largely populated by first and second year chemistry students, it would be great if the art work could have some combination of an educational and a scientific scheme, conveying “youthful enthusiasm for science/chemistry or the wonder of science”, which is more or less consistent with the Department’s motto: “It all begins with chemistry”.

A possible Florida-related theme might also be suggested – solar energy, environmental fragility. The art work might also have a theme that conveys the idea that the practice of chemistry involves an innovative utility of natural resources (water, minerals, plants) to achieve the invention and development of new medicines and novel, highly functional materials – i.e., “Better Life through Chemistry”.
UF-323A Chemistry/Chemical Biology Building - Call To Artists

View from Northwest

View from Northeast
Potential Sites for Artwork:

A North Entry Landscape

B North Entry Portico - Custom Pendant Light Fixture

C Atrium – Artwork Incorporated into Floor

D Atrium - Double Height Wall at South Stair

E Atrium - First Floor Glass Wall at General Chemistry Lab (limited to 2D graphics on surface of glass)

F Atrium - Second Floor Wall Along Balcony

G North Entry – Elevator Tower Wall
Potential Sites for Artwork:

A North Entry Landscape
B North Entry Portico - Custom Pendant Light Fixture
C Atrium – Artwork Incorporated into Floor
D Atrium - Double Height Wall at South Stair
E Atrium - First Floor Glass Wall at General Chemistry Lab (limited to 2D graphics on surface of glass)
G North Entry – Elevator Tower Wall
Potential Sites for Artwork:

B North Entry Portico - Custom Pendant Light Fixture

C Atrium – Artwork Incorporated into Floor

D Atrium - Double Height Wall at South Stair

F Atrium – Second Floor Wall Along Balcony

G North Entry – Elevator Tower Wall
UF-323A Chemistry/Chemical Biology Building - Call To Artists

West (Buckman Drive) Elevation

B North Entry Portico – Custom Pendant Light Fixture
UF-323A Chemistry/Chemical Biology Building - Call To Artists

North (University Avenue) Elevation

B North Entry Portico – Custom Pendant Light Fixture
Artwork Incorporated into the Atrium Floor

First Floor – Atrium Looking Northwest and North
C Artwork Incorporated into the Atrium Floor

First Floor Plan
UF-323A Chemistry/Chemical Biology Building - Call To Artists

D Atrium - Double Height Wall at South Stair

Enlarged Stair Elevation Looking East

Atrium Elevation Looking East
E Atrium - First Floor Glass Wall at General Chemistry Lab

Artwork Limited to 2D Graphics on Surface of Glass
E Atrium - First Floor Glass Wall at General Chemistry Lab

Second Floor – Atrium Looking Southeast

Artwork Limited to 2D Graphics on Surface of Glass
UF-323A Chemistry/Chemical Biology Building - Call To Artists

E Atrium - First Floor Glass Wall at General Chemistry Lab

First Floor – Looking Southwest

Artwork Limited to 2D Graphics on Surface of Glass
UF-323A Chemistry/Chemical Biology Building - Call To Artists

F Atrium – Second Floor Wall Along Balcony

Second Floor – Atrium Looking Southeast
Atrium Elevation Looking East

C Atrium – Artwork Incorporated into Floor
D Atrium - Double Height Wall at South Stair
E Atrium - First Floor Glass Wall at General Chemistry Lab (limited to 2D graphics on surface of glass)
F Atrium - Second Floor Wall Along Balcony
UF-323A Chemistry/Chemical Biology Building - Call To Artists

G North Entry – Elevator Tower Wall

Enlarged Elevator Wall Looking West

Atrium Elevation Looking West
Notes:

• Do not mail your application in a manner that requires a signature
• CDs as well as written application material will not be returned
• Please do not send any additional application materials (such as artist catalogs) that have not been requested

Have you included:

An artist’s statement?
A current resume emphasizing your public art experience?
An ID sheet?
Does your ID sheet have…
 Thumbnail images?
 Image Numbers?
 Title of works?
 Medium?
 Dimensions?
 Date of Work?
 Price of work/commission?

Are all of your documents…

Labeled with your name, address, phone, email address?
Labeled with the correct project number (i.e. UF 323A)?